miércoles, 2 de junio de 2010

CONCLUSION

Por medio del trabajo que acabamos de presentar, puedo concluir que la robótica y la inteligencia artificial van tomadas de la mano ya que la una se encarga de la parte mecánica, y la otra de la parte analítica.
La robótica es el diseño, fabricación y utilización de máquinas automáticas programables con el fin de realizar tareas repetitivas como el ensamble de automóviles, aparatos, etc. y otras actividades, por ello pienso que la robótica es la parte mecánica de una tecnología, en cambio creo que la inteligencia artificial es la parte analítica o la parte que determina la acción de los robots, ya que los robots no podrían realizar ninguna tarea sin que se les indicara u ordenara la tarea, por ello, aquí es donde entra la inteligencia artificial.

Gracias a la inteligencia artificial se ha logrado que una maquina sea capaz de desarrollar áreas de conocimiento muy especificas y complicadas, haciendo que la maquina pueda simular procesos que el hombre realiza. Pero cabe destacar que aún no se ha logrado que una máquina piense como un humano, pienso que una limitación es el hecho de que el hombre es irremplazable ya que el ser humano cuenta con una característica propia el cual es el sentido común.
Pero no podemos olvidar que el desarrollo de estas tecnologías no pretenden reemplazar al ser humano sino que tratan de mejorar el estilo de vida del ser humano, ya que recordemos que, por lo menos los robots hacen que el trabajo pesado sea mas facil de realizar, y que una maquina no se enferma, ni protestas, ni se cansa y esto puede elevar su utilidad. En fin esperemos que estas tecnologías no se nos vaya de las manos, y que no nos perjudique, sino que nos ayude.

inteligencia artificial


Historia:
Es en los años 50 cuando se logra realizar un sistema que tuvo cierto éxito, se llamó el Perceptrón de Rossenblatt. Éste era un sistema visual de reconocimiento de patrones en el cual se aunaron esfuerzos para que se pudieran resolver una gama amplia de problemas, pero estas energías se diluyeron enseguida.
Fué en los años 60 cuando Alan Newell y Herbert Simon, que trabajando la demostración de teoremas y el ajedrez por ordenador logran crear un programa llamado GPS(General Problem Solver: solucionador general de problemas). Éste era una sistema en el que el usuario definía un entorno en función de una serie de objetos y los operadores que se podían aplicar sobre ellos. Este programa era capaz de trabajar con las torres de Hanoi, así como con criptoaritmética y otros problemas similares, operando, claro está, con microcosmos formalizados que representaban los parámetros dentro de los cuales se podían resolver problemas. Lo que no podía hacer el GPS era resolver problemas ni del mundo real, ni médicos ni tomar decisiones importantes. El GPS manejaba reglas heurísticas (aprender a partir de sus propios descubrimientos) que la conducían hasta el destino deseado mediante el método del ensayo y el error.

En los años 70, un equipo de investigadores dirigido por Edward Feigenbaum comenzó a elaborar un proyecto para resolver problemas de la vida cotidiana o que se centrara, al menos, en problemas más concretos. Así es como nació el sistema experto.
El primer sistema experto fue el denominado Dendral, un intérprete de espectrograma de masa construido en 1967, pero el más influyente resultaría ser el Mycin de 1974. El Mycin era capaz de diagnosticar trastornos en la sangre y recetar la correspondiente medicación, todo un logro en aquella época que incluso fueron utilizados en hospitales (como el Puff, variante de Mycin de uso común en el Pacific Medical Center de San Francisco, EEUU).
Ya en los años 80, se desarrollaron lenguajes especiales para utilizar con la Inteligencia Artificial, tales como el LISP o el PROLOG. Es en esta época cuando se desarrollan sistemas expertos más refinados, como por el ejemplo el EURISKO. Este programa perfecciona su propio cuerpo de reglas heurísticas automáticamente, por inducción.

Definición de Inteligencia Artificial
La inteligencia artificial estudia como lograr que las máquinas realicen tareas que, por el momento, son realizadas mejor por los seres humanos. La definición es efímera porque hace referencia al estado actual de la informática. No incluye áreas que potencialmente tienen un gran impacto tales como aquellos problemas que no pueden ser resueltos adecuadamente ni por los seres humanos ni por las máquinas.
Al principio se hizo hincapié en las tareas formales como juegosy demostración de teoremas, juegos como las damas y el ajedrez demostraron interés. La geometría fue otro punto de interés y se hizo un demostrador llamado: El demostrador de Galenter. Sin embargo la IA pronto se centró en problemas que aparecen a diario denominados de sentido común (commonsense reasoning).
Se enfocaron los estudios hacia un problema muy importante denominado Comprensión del lenguaje natural. No obstante el éxito que ha tenido la IA se basa en la creación de los sistemas expertos, y de hecho áreas en donde se debe tener alto conocimiento de alguna disciplina se han dominado no así las de sentido común.

Aplicaciones de la IA:
Tareas de la vida diaria:

•Percepción
•Visión
•Habla
•Lenguaje natural
•Comprensión
•Generación
•Traducción
•Sentido común
•Control de un robot
Tareas formales:

•Juegos
•Ajedrez
•Backgammon
•Damas
•Go
•Matemáticas
•Geometría
•Lógica
•Cálculo Integral
•Demostración de las propiedades de los programas
Tareas de los expertos:

•Ingeniería
•Diseño
•Detección de fallos
•Planificación de manufacturación
•Análisis científico
•Diagnosis médica
•Análisis financiero
La evolución de la I.A. se debe al desarrollo de programas para ordenadores capaces de traducir de un idioma a otro, juegos de ajedrez, resolución de teoremas matemáticos, etc. Alrededor de 1950, Alan Turing desarrolló un método para saber si una máquina era o no "inteligente" denominado "Testde Turing", "en el cual un operador tiene que mantener una conversación en dos sentidos con otra entidad, a través de un teclado, e intentar que la otra parte le diga si se trata de una máquina o de otro ser humano.
Sobre este test circulan muchas historias ficticias, pero nuestra favorita es la que trata sobre una personaque buscaba trabajo y al que se le deja delante de un teclado para que se desenvuelva solo. Naturalmente, se da cuenta de la importancia de este test para sus perspectivas de carrera y por lo tanto lucha valientemente para encontrar el secreto, aparentemente sin éxito.

Pero de que sirve crear algoritmos capaces de imitar la inteligencia y el razonamiento humano; es aquí donde la I. A. y la Robótica tienen un punto en común.
La I.A. tiene aplicación en la Robótica cuando se requiere que un robot "piense" y tome una decisión entre dos o mas opciones, es entonces cuando principalmente ambas ciencias comparten algo en común. La I.A. también se aplica a los ordenadores, ya sean PC’s , servidores de redo terminales de red, ya que su principal aplicación es desarrollar programas computacionales que resuelvan problemas que implican la interacción entre la máquina y el hombre, es decir, las máquinas "aprenderán" de los hombres, para realizar mejor su labor.

Técnica de Inteligencia Artificial:
Uno de los más rápidos y sólidos resultados que surgieron en las tres primeras décadas de las investigaciones de la IA fue que la Inteligencia necesita conocimiento.
Para compensar este logro imprescindiblemente el conocimiento poseé algunas propiedades poco deseables como:

•Es voluminoso
•Es difícil caracterizarlo con exactitud
•Cambia constantemente
•Se distingue de los datos en que se organiza de tal forma que se corresponde con la forma en que va a ser usado.
Con los puntos anteriores se concluye que una técnica de IA es un método que utiliza conocimiento representado de tal forma que:

•El conocimiento represente las generalizaciones En otras palabras no es necesario representar de forma separada cada situación individual. En lugar de esto se agrupan las situaciones que comparten propiedades importantes. Si el conocimiento no posee esta propiedad, puede necesitarse demasiada memoria.
Si no se cumple esta propiedad es mejor hablar de "datos" que de conocimiento.

•Debe ser comprendido por las personas que lo proporcionan. Aunque en muchos programas, los datos pueden adquirirse automáticamente (por ejemplo, mediante lectura de instrumentos), en muchos dominios de la IA, la mayor parte del conocimiento que se suministra a los programas lo proporcionan personas haciéndolo siempre en términos que ellos comprenden.
•Puede modificarse fácilmente para corregir errores y reflejar los cambios en el mundo y en nuestra visión del mundo.
•Puede usarse en gran cantidad de situaciones aún cuando no sea totalmente preciso o completo.
•Puede usarse para ayudar a superar su propio volumen, ayudando a acotar el rango de posibilidades que normalmente deben ser consideradas.
Es posible resolver problemas de IA sin utilizar Técnicas de IA (si bien estas soluciones no suelen ser muy adecuadas). También es posible aplicar técnicas de IA para resolver problemas ajenos a la IA. Esto parece ser adecuado para aquellos problemas que tengan muchas de las características de los problemas de IA.
Los problemas al irse resolviendo tienen entre las características de su solución:

•Complejidad
•El uso de generalizaciones
•La claridad de su conocimiento
•La facilidad de su extensión
Investigación y desarrollo en áreas de la IA:

Las aplicaciones tecnológicas en las que los métodos de IA usados han demostrado con éxito que pueden resolver complicados problemas de forma masiva, se han desarrollado en sistemas que:

1.Permiten al usuario preguntar a una base de datos en cualquier lenguaje que sea, mejor que un lenguaje de programación.

2.Reconocen objetos de una escena por medio de aparatos de visión.
3.Generar palabras reconocibles como humanas desde textos computarizados.
4.Reconocen e interpretan un pequeño vocabulario de palabras humanas.
5.Resuelven problemas en una variedad de campos usando conocimientos expertos codificados.
Los países que han apadrinado investigaciones de IA han sido: EEUU. , Japón, Reino Unido y la CEE; y lo han llevado a cabo a través de grandes compañías y cooperativas de riesgo y ventura, así como con universidades, para resolver problemas ahorrando dinero. Las aplicaciones más primarias de la IA se clasifican en cuatro campos: sistemas expertos, lenguaje natural, robótica y visión, sistemas censores y programación automática.

la robotica


Definición:
El término robótica procede de la palabra robot. La robótica es, por lo tanto, la cienciao rama de la ciencia que se ocupa del estudio, desarrollo y aplicaciones de los robots.
Otra definición de robótica es el diseño, fabricación y utilización de máquinas automáticas programables con el fin de realizar tareas repetitivas como el ensamble de automóviles, aparatos, etc. y otras actividades. Básicamente, la robótica se ocupa de todo lo concerniente a los robots, lo cual incluye el control de motores, mecanismos automáticos neumáticos, sensores, sistemas de cómputos, etc.
En la robótica se aúnan para un mismo fin varias disciplinas confluyentes, pero diferentes, como la Mecánica, la Electrónica, la Automática, la Informática, etc.
El término robótica se le atribuye a Isaac Asimov.
Los tres principios o leyes de la robótica según Asimov son:

•Un robot no puede lastimar ni permitir que sea lastimado ningún ser humano.
•El robot debe obedecer a todas las órdenes de los humanos, excepto las que contraigan la primera ley.
•El robot debe autoprotegerse, salvo que para hacerlo entre en conflicto con la primera o segunda ley.
Robots:
Los robots son dispositivos compuestos de sensores que reciben datos de entrada y que pueden estar conectados a la computadora. Esta, al recibir la información de entrada, ordena al robot que efectúe una determinada acción. Puede ser que los propios robots dispongan de microprocesadoresque reciben el input de los sensores y que estos microprocesadores ordenen al robot la ejecución de las acciones para las cuales está concebido. En este último caso, el propio robot es a su vez una computadora.
Otras definiciones para robot son:

•Máquina controlada por ordenador y programada para moverse, manipular objetos y realizar trabajos a la vez que interacciona con su entorno. Los robots son capaces de realizar tareas repetitivas de forma más rápida, barata y precisa que los seres humanos. El término procede de la palabra checa robota, que significa "trabajo obligatorio", fue empleado por primera vez en la obra teatral de 1921 R.U.R (Robots Universales de Rossum) por el novelista y dramaturgo checo Karel Capek. Desde entonces se ha empleado la palabra robot para referirse a una máquina que realiza trabajos para ayudar a las personas o efectúa tareas difíciles o desagradables para los humanos.
•Un robot es una manipulador multifuncional reprogramable diseñado para mover material, piezas, herramientas o dispositivos especializados a través de movimientos programados variables para la realización de tareas variadas. Para realizar cualquier tarea útil el robot debe interactuar con el entorno, el cual puede incluir dispositivos de alimentación, otros robots y, lo más importante, gente. Consideramos que la robótica abarca no solamente el estudio del robot en sí, sino también las interfaces entre él y sus alrededores.
•Ingenio electrónico que puede ejecutar automáticamente operaciones o movimientos muy variados, y capaz de llevar a cabo todos los trabajos normalmente ejecutados por el nombre.
•Manipulador multifuncional y reprogramable, diseñado para mover materiales, piezas, herramientas o dispositivos especiales, mediante movimientos programados y variables que permiten llevar a cabo diversas tareas.
El nombre de robots es tomado del vocablo checo "robota" que significa siervo y que es idéntico al término ruso que significa trabajo arduo, repetitivo y monótono, y lo usó por primera vez el escritor Karel Capek en 1917 para referirse en su obras a máquinas con forma humanoide. Deriva de "robotnik" que define al esclavo de trabajo
En la actualidad, los avances tecnológicos y científicos no han permitido todavía construir un robot realmente inteligente, aunque existen esperanzas de que esto sea posible algún día. Hoy por hoy, una de las finalidades de la construcción de robots es su intervención en los procesos de fabricación. Estos robots, que no tienen forma humana en absoluto, son los encargados de realizar trabajos repetitivos en las cadenas de procesode fabricación. En una fábrica sin robots, los trabajos antes mencionados los realizan técnicos especialistas en cadenas de producción. Con los robots, el técnico puede librarse de la rutina y el riesgo que sus labores comportan, con lo que la empresa gana en rapidez, calidad y precisión.

Tipos de robots

•Robots impulsados neumaticamente: La programación consiste en la conexión de tubos de plástico a unos manguitos de unión de la unidad de control neumático. Esta unidad está formada por dos partes: una superior y una inferior. La parte inferior es un secuenciador que proporciona presióny vacío al conjunto de manguitos de unión en una secuencia controlada por el tiempo. La parte superior es el conjunto de manguitos de unión que activan cada una de las piezas móviles del robot. Son los más simples que existen. Hay quien opina que a este tipo de máquinas no se les debería llamar robots; sin embargo, en ellas se encuentran todos los elementos básicos de un robot: estas máquinas son programables, automáticas y pueden realizar gran variedad de movimientos.
•Robots equipados con servomecanismos: El uso de servomecanismos va ligado al uso de sensores, como los potenciómetros, que informan de la posición del brazo o la pieza que se ha movido del robot, una vez éste ha ejecutado una orden transmitida. Esta posición es comparada con la que realmente debería adoptar el brazo o la pieza después de la ejecución de la orden; si no es la misma, se efectúa un movimiento más hasta llegar a la posición indicada.
•Robots punto a punto: La programación se efectúa mediante una caja de control que posee un botón de control de velocidad, mediante el cual se puede ordenar al robot la ejecución de los movimientos paso a paso. Se clasifican, por orden de ejecución, los pasos que el robot debe seguir, al mismo tiempo que se puede ir grabando en la memoria la posición de cada paso. Este será el programaque el robot ejecutará. Una vez terminada la programación, el robot inicia su trabajo según las instrucciones del programa. A este tipo de robots se les llama punto a punto, porque el camino trazado para la realización de su trabajo está definido por pocos puntos.
•Robots controlados por computadora: Se pueden controlar mediante computadora. Con ella es posible programar el robot para que mueva sus brazos en línea recta o describiendo cualquier otra figura geométrica entre puntos preestablecidos. La programación se realiza mediante una caja de control o mediante el teclado de la computadora. La computadora permite además acelerar más o menos los movimientos del robot, para facilitar la manipulación de objetos pesados.
•Robots con capacidades sensoriales:
Aún se pueden añadir a este tipo de robots capacidades sensoriales: sensores ópticos, codificadores, etc. Los que no poseen estas capacidades sólo pueden trabajar en ambientes donde los objetos que se manipulan se mantienen siempre en la misma posición. Los robots con capacidades sensoriales constituyen la última generación de este tipo de máquinas. El uso de estos robots en los ambientes industriales es muy escaso debido a su elevado costo. Estos robots se usan en cadenas de embotellado para comprobar si las botellas están llenas o si la etiqueta está bien colocada.

•Robots mosquitos: La cucaracha metálica se arrastra con gran destreza por la arena, como un verdadero insecto. A pesar de que Atila avanza a 2 km/h, tratando de no tropezar con las cosas, es «gramo por gramo el robot más complejo del mundo», según su creador, Rodney Brooks. En su estructura de 1,6 kg y 6 patas, lleva 24 motores, 10 computadores y 150 sensores, incluida una cámara de video en miniatura. La experimentación en operaciones quirúrgicas con robots abre nuevos campos tan positivos como esperanzadores. La cirugía requiere de los médicos una habilidad, precisión y decisión muy cualificadas. La asistencia de ingenios puede complementar algunas de las condiciones que el trabajo exige. En operaciones delicadísimas, como las de cerebro, el robot puede aportar mayor fiabilidad. Últimamente, se ha logrado utilizar estas máquinas para realizar el cálculode los ángulos de incisión de los instrumentos de corte y reconocimiento en operaciones cerebrales; así mismo, su operatividad se extiende a la dirección y el manejo del trepanador quirúrgico para penetrar el cráneo y de la aguja de biopsia para tomar muestras del cerebro.
•Robot industrial: Nace de la unión de una estructura mecánica articulada y de un sistema electrónico de control en el que se integra una computadora. Esto permite la programación y control de los movimientos a efectuar por el robot y la memorización de las diversas secuencias de trabajo, por lo que le da al robot una gran flexibilidad y posibilita su adaptación a muy diversas tareas y medios de trabajo,
El robot industrial es pues un dispositivo multifuncional, es decir, apto para muy diversas aplicaciones, al contrario de la máquina automática clásica, fabricada para realizar de forma repetitiva un tipo determinado de operaciones. El robot industrial se diseña en función de diversos movimientos que debe poder ejecutar; es decir, lo que importa son sus grados de libertad, su campo de trabajo, su comportamiento estático y dinámico.

La capacidad del robot industrial para reconfigurar su ciclo de trabajo, unida a la versatilidad y variedad de sus elementos terminales (pinzas, garras, herramientas, etc.), le permite adaptarse fácilmente a la evolucióno cambio de los procesos de producción, facilitando su reconversión.

Los robots industriales están disponibles en una amplia gama de tamaños, formas y configuraciones físicas. La gran mayoría de los robots comercialmente disponibles en la actualidad tienen una de estas cuatro configuraciones básicas:

•Configuración polar
•Configuración cilíndrica
•Configuración de coordenadas cartesianas
•Configuración de brazo articulado
La configuración polar utiliza coordenadas polares para especificar cualquier posición en términos de una rotación sobre su base, un ángulo de elevación y una extensión lineal del brazo.
La configuración cilíndrica sustituye un movimiento lineal por uno rotacional sobre su base, con los que se obtiene un medio de trabajo en forma de cilindro.
La configuración de coordenadas cartesianas posee tres movimientos lineales, y su nombre proviene de las coordenadas cartesianas, las cuales son más adecuadas para describir la posición y movimiento del brazo. Los robots cartesianos a veces reciben el nombre de XYZ, donde las letras representan a los tres ejes del movimiento.
La configuración de brazo articulado utiliza únicamente articulaciones rotacionales para conseguir cualquier posición y es por esto que es el más versátil.

Futuro de la robótica
A pesar de que existen muchos robots que efectúan trabajos industriales, aquellos son incapaces de desarrollar la mayoría de
operaciones que la industria requiere. Al no disponer de unas capacidades sensoriales bien desarrolladas, el robot es incapaz de realizar tareas que dependen del resultado de otra anterior.
En un futuro próximo, la robótica puede experimentar un avance espectacular con las cámaras de televisión, más pequeñas y menos caras, y con las computadoras potentes y más asequibles.
Los sensores se diseñarán de modo que puedan medir el espacio tridimensional que rodea al robot, así como reconocer y medir la posición y la orientación de los objetos y sus relaciones con el espacio. Se dispondrá de un sistema de proceso sensorial capaz de analizar e interpretar los datos generados por los sensores, así como de compararlos con un modelo para detectar los errores que se puedan producir. Finalmente, habrá un sistema de control que podrá aceptar comandos de alto nivel y convertirlos en órdenes, que serán ejecutadas por el robot para realizar tareas enormemente sofisticadas.

Si los elementos del robot son cada vez más potentes, también tendrán que serlo los programas que los controlen a través de la computadora. Si los programas son más complejos, la computadora deberá ser más potente y cumplir nos requisitos mínimos para dar una respuesta rápida a la información que le llegue a través de los sensores del robot.
Paralelo al avance de los robots industriales era el avance de las investigaciones de los robots llamados androides, que también se beneficiarán de los nuevos logros en el campo de los aparatos sensoriales. De todas formas, es posible que pasen decenas de años antes de que se vea un androide con mínima apariencia humana en cuanto a movimientos y comportamiento.

Robótica e Inteligencia Artificial


En este trabajo desarrollaremos los temas de Robótica e Inteligencia Artificial, a continuación daremos una definición de estos dos temas.
La noción de robótica atiende a una idea de estructura mecánica universal capaz de adaptarse, como el hombre, a muy diversos tipos de acciones. La robótica, en sentido general abarca una amplia gama de dispositivos con muy diversas cualidades físicas y funcionales asociada a la particular estructura mecánicade aquellos, a sus características operativas y al campo de aplicación para el que sea concebido.

Todos estos factores están íntimamente relacionados, de forma que la configuración y el comportamiento de un robot condicionan su adecuación para un campo de aplicación especifico. La robótica se apoya en gran medida en los progresos de la microelectrónica y la microinformática, así como en nuevas disciplinas como el reconocimiento de formas y la inteligencia artificial.
En cambio, la Inteligencia Artificial o IA en Español (AI en Inglés), es una ciencia perteneciente a la rama de la Cibernética, que estudia el mecanismo de la inteligencia humana con el fin de crear máquinas inteligentes, capaces de realizar cálculos y de "pensar", elaborar juicios y tomar decisiones.
Sus orígenes se remontan miles de años atrás, pues en casi todas las mitologías existe algún tipo de "máquina" divina o casi divina de ésta naturaleza. Definir su comienzo en la Edad Moderna y Contemporánea es muy difícil pues son muchos los inventores y genios que han ido contribuyendo a crear éstas máquinas, Leonardo Da Vinci, Blas Pascal, Charles Babbage o Alan Turing y uno cometería grandes errores e injusticias. No obstante, son muchos los especialistas en computación que en las últimas décadas consideran como primera máquina inteligente a la "máquina de Turing", creada por Alan Turing.
En el trabajo que presentare a continuación se tratará de resaltar las características principales de estos dos temas, ademas veremos como se fusionan estas dos ramas de la tecnología.

¿Alguna vez pensarán las máquinas?

Allá por el año 1950, Alan Turing, un matemático británico, propuso un experimento: En un cuarto (A) y en un cuarto (B) estarían una máquina y un hombre, afuera una persona estaría haciendo una serie de preguntas que responderían indistintamente los ocupantes de los cuartos A y B. Las preguntas serán por algún teletipo para que no se detecten declinaciones de voz.

Cuando la persona que pregunta, no sepa distinguir quien es la máquina y quién es el hombre, entonces se habrá conseguido una máquina inteligente.
Alan Turing aventuraba a decir que dicha máquina se conseguiría realizar en unos 50 años. Pues bien, han pasado ya poco más de 50 años desde que lo mencionó y no se ha logrado superar la prueba.

La Inteligencia Artificial (IA), también conocida, aplicada o involucrada a términos como Robótica, Autómatas, Sistemas Expertos, etcétera, es una disciplina que envuelve a varias ramas de estudio: la ingeniería, la computación, la psicología, la física, la medicina, la filosofía, la teología y lo que se acumule.




¿Cómo podríamos hacerle para que una máquina piense?.
Alguna vez un investigador mencionó que el cerebro no es mas que una máquina de carne. Tomando esta declaración, entonces porqué no lo podrá hacer el Silicio o el Germanio que son los materiales con los que se fabrican los chips.

El cerebro, en funcionamiento, está procesando información que se transmite por medio de impulsos electroquímicos activados por las neuronas que son las células de las cuales está constituido el cerebro y que almacenan la información y la difunden a otros sectores del cerebro donde sea requerido.

Existen unas 100 mil millones de neuronas en el cerebro humano aunque no todas se ocupan, de hecho a diario desde que cumplimos 20 años, se pierden unas 50 mil. Pero las neuronas tienen acciones propias, ¿cómo es que se las arreglan para diferenciar o dirigirse a algún lugar del cerebro y procesar un recuerdo, hacer un cálculo, mantener el latido del corazón, subir unas escaleras, sentir dolor, etcétera, etcétera?.

Dentro de cada chip o circuito integrado, existen los semiconductores en diferentes arreglos con los cuales nos dan una función específica. El fundamental, es el DIODO.


Este dispositivo permite que fluya o no, un impulso eléctrico, puede ser dicho impulso, lo que conocemos como (Bit), prendido o apagado, cero o uno.

La disposición de diodos en un circuito electrónico nos puede dar un TRANSISTOR, con el cual podemos tener por lo menos tres alternativas para que fluya un par de impulsos eléctricos. El transistor encapsula a los diodos y por eso está constituido como un solo dispositivo. Con un par de transistores ya se pueden hacer por lo menos efectos de luces secuenciales de Leds como los que vemos en adornos para autos.

Ahora bien, un conjunto de transistores conectados de determinadas formas y encapsulados nos dá una compuerta lógica. La compuerta lógica, es un dispositivo que constituye una serie de operaciones condicionadas para los impulsos eléctricos. Es decir, podemos tener muchos unos y ceros, prendidos y apagados, pasa o no pasa. Con una o dos compuertas lógicas ya se pueden hacer contadores de tiempo o sumadoras básicas, incluso chapas de seguridad electrónicas.

Un conjunto de compuertas lógicas a gran escala y de pequeña integración de encapsulado digamos de 4 X 4 cm, ya nos dá un microprocesador que puede realizar millones de instrucciones por segundo (MIPS), es decir, millones de encendidos y apagados, de unos y ceros, millones de bits procesándose.

Con un microprocesador ya podemos hacer computadoras, máquinas que realizan una tarea especifica en la superficie de un planeta como recoger material de su suelo envolverlo y analizarlo, viajar al espacio sin perder la dirección, detectar dónde hay luz y seguirla o dónde hay una colina y darle la vuelta o graduar el combustible necesario para expulsarlo por los inyectores de un auto, un avión o una nave espacial.



Pues bien, si el cerebro tuviera que hacerse con los microprocesadores, compuertas, transistores, diodos, etc, con los que actualmente contamos, tendría el tamaño de una central eléctrica y tardaría varios miles de años en terminarse.

¿Se tendrá alguna vez una máquina que sea igual que el hombre?

Esto es algo muy difícil de responder. Nunca podremos llegar con una máquina y preguntarle: ¿Qué sientes?, es probable que nos responda cualquier cosa pero esa respuesta fue programada por los diseñadores. Si es difícil saber qué piensa otra persona incluso uno mismo, entonces es mucho más difícil saber si una máquina sentirá algo o tendrá conciencia de saber que es lo que está pensando o sintiendo.

En los juegos de ajedrez por computadora se tiene un modelo de lo que puede ser un desarrollo de variantes de procesamiento de la información. La computadora está “pensando” que jugada hará, pero nunca se comparará con un hombre porque el hombre está procesando la jugada que realizará pero en su entorno, tiene la presión del público, de sus preocupaciones personales, de su estado de ánimo. La máquina solo está pensando su próxima mejor jugada. Pero atención: una computadora ya le ganó a Gary Kasparov campeón mundial de ajedrez, cosa que ya preocupa a los que no son entusiastas de la IA.



Pero hay quienes salen en defensa de los robots como lo hizo Carl Sagan y menciona que si así como el ser humano hace gala de un chauvinismo, las personas blancas de racismo y los hombres de sexismo, no habrá algo así como una actitud de especiismo, esto porque no se pueda asimilar que una máquina podrá ser como el hombre, sobre todo del complejo de inferioridad que se siente cuando vemos como una calculadora nos hace operaciones de cifras grandísimas con decimales en una fracción de segundos o de ver como una computadora nos selecciona y filtra información de una base de datos inmensa.

Y ahora, supongamos que se deciden a hacer una máquina que piense como un hombre. ¿Pero como va a aprender?, ¿se le introducirán todos los datos de todo lo que conoce un ser humano promedio y algo más?, o ¿se le programará para que aprenda como lo va haciendo el hombre desde que es niño?.



Increíblemente ya se están haciendo proyectos de las dos formas anteriores llamadas vertientes Simbólica y Conexionista entre ellos el proyecto Cyc, con el cual se le han introducido datos que analizará la propia computadora y tomará decisiones por sí misma, este proyecto está por terminarse y se supone que los resultados serán los de la inteligencia de un niño de 2 años.

Pero y ¿qué pasará si la inteligencia de estas máquinas es tal que pretendan dominar al hombre y crear máquinas hijas de sí mismas?, recordemos que están aprendiendo a pensar y reciben todo lo que está en su entorno, o ¿qué pasa si alguien con ideas destructivas le atiborra de información dañina a la computadora para afectar al hombre o al planeta?. Con todo esto valdrá la pena entonces hacer máquinas que emulen al hombre.

Bueno como en todo, si está en malas manos será peligroso, pero si es por el bien entonces imaginemos a esas máquinas entrando a lugares donde no puede acceder el hombre, o ser empleado en pruebas donde la vida de un individuo corre peligro, o la seguridad que proporcionaría ante algún ataque delictivo. En fin veremos que nos depara la tecnología en los próximos años.

Objetivos de la Investigación en Inteligencia Artificial.

Los investigadores en inteligencia artificial se concentran principalmente en los sistemas expertos, la resolución de problemas, el control automático, las bases de datos inteligentes y la ingeniería del software (diseños de entornos de programación inteligente).

Otros investigadores están trabajando en el reto del reconocimiento de patrones donde se espera un rápido progreso en este campo que abarca la comprensión y la síntesis del habla, el proceso de imágenes y la visión artificial.

Finalmente, la fundamental investigación sobre la representación del conocimiento, la conceptualización cognoscitiva y la comprensión del lenguaje natural.

Uno de los principales objetivos de los investigadores en inteligencia artificial es la reproducción automática del razonamiento humano.

El razonamiento de un jugador de ajedrez no siempre es el mismo que el de un directivo que se pregunta la viabilidad de fabricar un nuevo producto. Un niño jugando con bloques de madera en una mesa no tiene idea de la complejidad del razonamiento necesario para llevar a cabo la construcción de una pirámide, e intentar que un robot hiciera lo mismo que el niño requeriría un largo programa de computador.

Diferentes teorías y Diferentes metodologías

Diferentes teorías:

1.Construir réplicas de la compleja red neuronal del cerebro humano (bottom-up).
2.Intentar imitar el comportamiento del cerebro humano con un computador (top-down).

Diferentes metodologías:

1.La lógica difusa: permite tomar decisiones bajo condiciones de incerteza.
2.Redes neuronales: esta tecnología es poderosa en ciertas tareas como la clasificación y el reconocimiento de patrones. Está basada en el concepto de "aprender" por agregación de un gran número de muy simples elementos.
Este modelo considera que una neurona puede ser representada por una unidad binaria: a cada instante su estado puede ser activo o inactivo. La interacción entre las neuronas se lleva a cabo a través de sinapsis. Según el signo, la sinapsis es excitadora o inhibidora.

El perceptrón está constituido por las entradas provenientes de fuentes externas, las conexiones y la salida. En realidad un perceptrón es una Red Neuronal lo más simple posible, es aquella donde no existen capas ocultas.

Para cada configuración de los estados de las neuronas de entrada (estímulo) la respuesta del perceptrón obedece a la siguiente dinámica: se suman los potenciales sinápticos y se comparan con un umbral de activación. Esta suma ponderada es también llamada campo. Si el campo es mayor que un umbral, la respuesta de la neurona es activa, si no, es inactiva.

Con una arquitectura tan simple como la del perceptrón no se puede realizar más que una clase de funciones "booleanas" muy simples, llamadas linealmente separables. Son las funciones en las cuales los estados de entrada con salida positiva pueden ser separados de aquellos a salida negativa por un hiperplano. Un hiperplano es el conjunto de puntos en el espacio de estados de entrada, que satisfacen una ecuación lineal. En dos dimensiones, es una recta, en tres dimensiones un plano, etc.

Si se quieren realizar funciones más complejas con Redes Neuronales, es necesario intercalar neuronas entre las capas de entradas y de salida, llamadas neuronas ocultas. Una red multicapas puede ser definida como un conjunto de perceptrones, ligados entre si por sinapsis y dispuestos en capas siguiendo diversas arquitecturas. Una de las arquitecturas más comúnmente usada es llamada feedforward: con conexiones de la entrada a las capas ocultas y de éstas hacia la salida.

El funcionamiento de una Red Neuronal es gobernado por reglas de propagación de actividades y de actualización de los estados.

Características de la Inteligencia Artificial.

1.Una característica fundamental que distingue a los métodos de Inteligencia Artificial de los métodos numéricos es el uso de símbolos no matemáticos, aunque no es suficiente para distinguirlo completamente. Otros tipos de programas como los compiladores y sistemas de bases de datos, también procesan símbolos y no se considera que usen técnicas de Inteligencia Artificial.
Las conclusiones de un programa declarativo no son fijas y son determinadas parcialmente por las conclusiones intermedias alcanzadas durante las consideraciones al problema específico. Los lenguajes orientados al objeto comparten esta propiedad y se han caracterizado por su afinidad con la Inteligencia Artificial.

2.El comportamiento de los programas no es descrito explícitamente por el algoritmo. La secuencia de pasos seguidos por el programa es influenciado por el problema particular presente. El programa especifica cómo encontrar la secuencia de pasos necesarios para resolver un problema dado (programa declarativo). En contraste con los programas que no son de Inteligencia Artificial, que siguen un algoritmo definido, que especifica, explícitamente, cómo encontrar las variables de salida para cualquier variable dada de entrada (programa de procedimiento).
3.El razonamiento basado en el conocimiento, implica que estos programas incorporan factores y relaciones del mundo real y del ámbito del conocimiento en que ellos operan. Al contrario de los programas para propósito específico, como los de contabilidad y cálculos científicos; los programas de Inteligencia Artificial pueden distinguir entre el programa de razonamiento o motor de inferencia y base de conocimientos dándole la capacidad de explicar discrepancias entre ellas.
4.Aplicabilidad a datos y problemas mal estructurados, sin las técnicas de Inteligencia Artificial los programas no pueden trabajar con este tipo de problemas. Un ejemplo es la resolución de conflictos en tareas orientadas a metas como en planificación, o el diagnóstico de tareas en un sistema del mundo real: con poca información, con una solución cercana y no necesariamente exacta.
La Inteligencia Artificial incluye varios campos de desarrollo tales como: la robótica, usada principalmente en el campo industrial; comprensión de lenguajes y traducción; visión en máquinas que distinguen formas y que se usan en líneas de ensamblaje; reconocimiento de palabras y aprendizaje de máquinas; sistemas computacionales expertos.

Los sistemas expertos, que reproducen el comportamiento humano en un estrecho ámbito del conocimiento, son programas tan variados como los que diagnostican infecciones en la sangre e indican un tratamiento, los que interpretan datos sismológicos en exploración geológica y los que configuran complejos equipos de alta tecnología.

Tales tareas reducen costos, reducen riesgos en la manipulación humana en áreas peligrosas, mejoran el desempeño del personal inexperto, y mejoran el control de calidad sobre todo en el ámbito comercial.
Aunque parezca impresionante la capacidad del sistema para razonar y ejecutar acciones, no se debe perder de vista el hecho que el robot se mueve en un mundo muy simple de figuras geométricas, y que las relaciones entre ellas son muy limitadas. En el mundo real existen tantos objetos diferentes y relaciones entre ellos, que tratar de llevar este sistema a un entorno real resulta prácticamente imposible.

En los primeros años de la década del 60 Frank Rosemblatt desarrolla, en la Universidad de Cornell, un modelo de la mente humana a través de una redneuronal y produce un primer resultado al cual llama perceptrón. Este sistema era una extensión del modelo matemático concebido por McCullock y Pitts para las neuronas, y funcionaba basándose en el principio de "disparar" o activar neuronas a partir de un valorde entrada el cual modifica un peso asociado a la neurona, si el peso resultante sobrepasa un cierto umbral la neurona se dispara y pasa la señal a aquellas con las que está conectada. Al final, en la última capa de neuronas, aquellas que se activen definirán un patrón el cual sirve para clasificar la entrada inicial.

Este trabajo constituye la base de las redes neuronales de hoy en día, sin embargo a raíz de su desarrollo sufrió fuertes críticas por parte de Marvin Minsky

y Seymour Papert lo cual provocó que la mayoría de los investigadores interesados en el tema lo abandonarán, y este no se retomara hasta los años 80.

En 1965-70, comenzaron a aparecer los programas expertos, que predicen la probabilidadde una solución bajo un set de condiciones, entre esos proyectos estuvo: DENDRAL, que asistía a químicos en estructuras químicas complejas euclidianas; MACSYMA, producto que asistía a ingenieros y científicos en la solución de ecuaciones matemáticas complejas, etc.

En la década 1970-80, creció el uso de sistemas expertos, muchas veces diseñados para aplicaciones médicas y para problemas realmente muy complejos como MYCIN, que asistió a médicos en el diagnóstico y tratamiento de infecciones en la sangre. Otros son: R1/XCON, PIP, ABEL, CASNET, PUFF, INTERNIST/CADUCEUS, etc. Algunos permanecen hasta hoy.

De 1975 en adelante, comienza la era de los lenguajes expertos (shells) como EMYCIN, EXPERT, OPSS, etc. para luego tratar de que éstos sean más amigables y funcionales.

Las definiciones de Inteligencia Artificial son muchas, pero podría decirse que son programas que realizan tareas que si fueran hechas por humanos se considerarían inteligentes.

Estos programas obviamente corren en un computador y se usan, como por ejemplo, en control robótico, comprensión de lenguajes naturales, procesamiento de imágenes basado en conocimientos previos, estrategias de juegos, etc. reproduciendo la experiencia que un humano adquiriría y de la forma en que un humano lo haría.

Para clasificar las máquinas como "pensantes", es necesario definir qué es inteligencia y qué grado de inteligencia implica resolver problemas matemáticos complejos, hacer generalizaciones o relaciones, percibir y comprender. Los estudios en las áreas del aprendizaje, del lenguaje y de la percepción sensorial han ayudado a los científicos a definir a una máquina inteligente. Importantes desafíos han sido tratar de imitar el comportamiento del cerebro humano, con millones de neuronas y extrema complejidad.

Nociones y Antecedentes Históricos de Inteligencia Artificial.

Definiciones sobre Inteligencia Artificial:

•Disciplina científico-técnica que trata de crear sistemas artificiales capaces de comportamientos que, de ser realizados por seres humanos, se diría que requieren inteligencia.
•Estudio de los mecanismos de la inteligencia y las tecnologías que lo sustentan. (Newell, 91)
•Intento de reproducir (modelar) la manera en que las personas identifican, estructuran y resuelven problemas difíciles (Pople, 84)
•Son ciertas herramientas de programación, entendiendo por herramientas:

◦Lenguajes: LISP, PROLOG
◦Entornos de desarrollo: shells
◦Arquitecturas de alto nivel: nodo y arco, sistemas de producciones
Desde sus comienzos hasta la actualidad, la Inteligencia Artificial ha tenido que hacer frente a una serie de problemas:

•Los computadores no pueden manejar (no contienen) verdaderos significados.
•Los computadores no tienen autoconciencia (emociones, sociabilidad, etc.).
•Un computador sólo puede hacer aquello para lo que está programado.
•Las máquinas no pueden pensar realmente.
En 1843, Lady Ada Augusta Byron, patrocinadora de Charles Babbage planteó el asunto de si la máquina de Babbage podía "pensar".

Los primeros problemas que se trató de resolver fueron puzzles, juegos de ajedrez, traducción de textos a otro idioma.

Durante la II Guerra Mundial Norbert Wiener y John Von Neumann establecieron los principios de la cibernética en relación con la realización de decisiones complejas y control de funciones en máquinas.

La teoría de la retroalimentación en mecanismos, como por ejemplo un termostato que regula la temperaturaen una casa, tuvo mucha influencia. Esto aún no era propiamente Inteligencia Artificial. Se hizo mucho en traducciones (Andrew Booth y Warren Weaver), lo que sembró la semilla hacia el entendimiento del lenguaje natural.

En el año 1955 Herbert Simon, el físico Allen Newell y J.C. Shaw, programador de la RAND Corp. y compañero de Newell, desarrolla el primer lenguaje de programación orientado a la resolución de problemas de la Inteligencia Artificial, el IPL-11. Un año más tarde estos tres científicos desarrollan el primer programa de Inteligencia Artificial al que llamaron Logic Theorist, el cual era capaz de demostrar teoremas matemáticos, representando cada problema como un modelo de árbol, en el que se seguían ramas en busca de la solución correcta, que resultó crucial. Este programa demostró 38 de los 52 teoremas del segundo capítulo de Principia Mathematica de Russel y Whitehead.

En 1956, con la ahora famosa conferenciade Dartmouth, organizada por John McCarthy y en la cual se utilizó el nombre de inteligencia artificial para este nuevo campo, se separó la Inteligencia Artificial de la ciencia del computador, como tal. Se estableció como conclusión fundamental la posibilidad de simular inteligencia humana en una máquina.

En 1957 Newell y Simon continúan su trabajo con el desarrollo del General Problems Solver (GPS). GPS era un sistema orientado a la resolución de problemas; a diferencia del Logic Theorist, el cual se orientó a la demostración de teoremas matemáticos, GPS no estaba programado para resolver problemas de un determinado tipo, razón a la cual debe su nombre. Resuelve una gran cantidad de problemas de sentido común, como una extensión del principio de retroalimentación de Wiener.

Diversos centros de investigación se establecieron, entre los más relevantes están, la UniversidadCarnegie Mellon, el Massachusetts Institute of Technologie (MIT), encabezado por Marvin Minsky, la Universidad de Standford e IBM. Los temas fundamentales eran el desarrollo de heurísticas y el aprendizaje de máquinas.

En 1957 McCarthy desarrolló el lenguajeLISP. La IBM contrató un equipo para la investigación en esa área y el gobierno de USA aportó dinero al MIT también para investigación en 1963.

A finales de los años 50 y comienzos de la década del 60 se desarrolla un programa orientado a la lectura de oraciones en inglés y la extracción de conclusiones a partir de su interpretación, al cual su autor, Robert K. Lindsay, denomina "Sad Sam". Este podía leer oraciones del tipo "Jim es hermano de John" y "La madre de Jim es Mary", a partir de ella el sistema concluía que Mary debía ser también la madre de John. Este sistema representó un enorme paso de avance en la simulación de inteligencia humana por una máquina, pues era capaz de tomar una pieza de información, interpretarla, relacionarla con información anteriormente almacenada, analizarla y sacar conclusiones lógicas.

En el mismo período de tiempo hay trabajos importantes de Herbert Gelernter, de IBM, quien desarrolla un "Demostrador Automático de Teoremas de la Geometría", Alex Bernstein desarrolla un programa para el juego de ajedrez que se considera el antecedente para "Deep Blue".

En 1961 se desarrolla SAINT (Simbolic Automatic INTegrator) por James Slagle el cual se orienta a la demostración simbólica en el área del álgebra.

En 1964 Bertrand Raphael construye el sistema SIR (Semantic Information Retrieval) el cual era capaz de comprender oraciones en inglés.

A continuación un ejemplo, traducido, de interacción entre SIR y un usuario:

Usuario: Todos somos personas

SIR: Comprendo

Usuario: Un dedo es una parte de la mano

SIR: Comprendo

Usuario: Cada persona tiene dos manos

SIR: La oración anterior es ambigua. Por favor reconstrúyala.

Usuario: En cada persona hay dos manos

SIR: Comprendo

Usuario: ¿Cuantos dedos tiene John?

SIR: La oración anterior es ambigua, pero asumo que TIENE significa TIENE COMO PARTES. No se si los dedos forman parte de John.

Usuario: John es un chico

SIR: Comprendo

Usuario: ¿Cuántos dedos tiene John?

SIR: La oración anterior es ambigua, pero asumo que TIENE significa TIENE COMO PARTES, ¿cuántos dedos por mano?.

Usuario: Cada mano tiene cinco dedos.

SIR: Comprendo

Usuario: ¿Cuántos dedos tiene John?

SIR: La respuesta es diez.

En la década del 60 se comienza en el MIT el estudio de la visión artificial, lo cual implica no solo captar imágenes a través de una cámara, sino también la comprensión, de lo que estas imágenes representan.

Un resultado importante en este trabajo lo constituye el "mundo de micro-bloques", en el cual un robot era capaz de percibir un conjunto de bloques sobre una mesa, moverlos y apilarlos; el éxito se debió a los investigadores Larry Roberts, Gerald Sussman, Adolfo Guzman, Max Clowes, David Huffman, David Waltz, Patrick Winston, y Berthold Horn.

Posteriormente se obtuvieron resultados importantes entre ellos el de mayor resonancia fue el sistema SCHRDLU de Terry Winograd, pues permitía interrogar y dar órdenes a un robot que se movía dentro de un mundo de bloques.

A continuación mostramos un ejemplo traducido:

¿Que es inteligencia artificial?

Él termino "inteligencia artificial" fue acuñado formalmente en 1956 durante la conferencia de Darthmounth, más para entonces ya se había estado trabajando en ello durante cinco años en los cuales se había propuesto muchas definiciones distintas que en ningún caso habían logrado ser aceptadas totalmente por la comunidad investigadora. La AI es una de las disciplinas más nuevas que junto con la genéticamoderna es el campo en que la mayoría de los científicos " más les gustaría trabajar".

Una de las grandes razones por la cuales se realiza el estudio de la IA es él poder aprender más acerca de nosotros mismos y a diferencia de la psicología y de la filosofía que también centran su estudio de la inteligencia, IA y sus esfuerzos por comprender este fenómeno están encaminados tanto a la construcción de entidades de inteligentes como su comprensión.

El estudio de la inteligencia es una de las disciplinas más antiguas, por más de 2000 años los filósofos no han escatimado esfuerzos por comprender como se ve, recuerda y razona junto con la forma en que estas actividades deberían realizarse. Según John Mc Carthy la inteligencia es la "capacidad que tiene el ser humano de adaptarse eficazmente al cambio de circunstancias mediante el uso de información sobre esos cambios", pero esta definición resulta muy amplia ya que de acuerdo con esta, el sistemainmunológico del cuerpo humanó resultaría inteligente ya que también mediante el uso de información este logra adaptarse al cambio. Otra interesante manera de ilustrar la inteligencia seria recurrir a la teoría societal de la mente de Marvin Minsky donde cada mente humana es el resultado del accionar de un comité de mentes de menor poder que conversan entre sí y combinan sus respectivas habilidades con el fin de resolver problemas.

La llegada de las computadoras a principios de los 50, permitió el abordaje sin especulación de estas facultades mentales mediante una autentica disciplinateórica experimental. Es a partir de esto que se encontró que la IA constituye algo mucho más complejo de lo que se pudo llegar a imaginar en principio ya que las ideas modernas que constituyen esta disciplina se caracterizan por su gran riqueza, sutileza e interés; en la actualidad la IA abarca una enorme cantidad de subcampos que van desde áreas de propósito general hasta tareas especificas.

Una de las definiciones que se han dado para describir la IA la sitúa dentro de una disciplina que tiene que ver con las ciencias de la computación que corresponden al esfuerzo por parte de gran cantidad de científicos que durante los últimos treinta años han realizado con el fin de dotar a las computadoras de inteligencia, a partir de esta definición encontramos que una de las técnicas de IA es aquella que se utiliza con el fin de lograr que un determinado programase comporte de forma inteligente sin pretender tener en cuenta la " forma de razonamiento "empleada para lograr ese comportamiento.

Luego, aquí surge un dilema, ya que según esto cualquier problema resoluble por un computador, sin complicaciones y también como un ser humano podría encuadrarse en el campo de la inteligencia artificial acudiendo solamente a la aplicación de reglas consecutivas al pie de la letra o lo que encontramos con el nombre de Algoritmos dentro del lenguaje de IA; este termino fue acuñado en honor al matemático árabe AL-KWARIZMI que copiló una serie de estos para ser aplicados a diferentes problemas algebraicos.



Cuando se aplican algoritmos a la solución de los problemas aunque no se está actuando inteligentemente si esta siendo eficaz pero los problemas realmente complicados a los que se enfrenta el ser humano son aquellos en los cuales no existe algoritmo conocido así que surgen de reglas que tratan de orientarnos hacia las soluciones llamadas Heurísticas en las cuales nunca nada nos garantiza que la aplicación de una de estas reglas nos acerque a la solución como ocurre con los anteriores.

A partir de estos datos; Farid Fleifel Tapia describe a la IA como: "la rama de la ciencia de la computación que estudia la resolución de problemas no algorítmicos mediante el uso de cualquier técnica de computación disponible, sin tener en cuenta la forma de razonamiento subyacente a los métodos que se apliquen para lograr esa resolución.

Para completar esa definición, algunas definiciones no tan formales emitidas por diferentes investigadores de la IA que consideran otros puntos de vista son:

•La IA es el arte de crear maquinas con capacidad de realizar funciones que realizadas por personas requieren de inteligencia. ( Kurzweil, 1990)
•La IA es el estudio de cómo lograr que las computadoras realicen tareas que, por el momento, los humanos hacen mejor. (Rich, Knight, 1991).
•La IA es la rama de la ciencia de la computación que se ocupa de la automatización de la conducta inteligente. (Lugar y Stubblefied, 1993).
•La IA es el campo de estudio que se enfoca a la explicación y emulación de la conducta inteligente en función de procesos computacionales. (Schalkoff, 1990).
En la IA se puede observar dos enfoques diferentes:

1.La IA concebida como el intento por desarrollar una tecnología capaz de proveer al ordenador capacidades de razonamiento similares a los de la inteligencia humana.
2.La IA en su concepción como investigación relativa a los mecanismos de la inteligencia humana que se emplean en la simulación de validación de teorías.
El primer enfoque se centra en la utilidad y no en el método como veíamos anteriormente con los algoritmos, los temas claves de este enfoque son la representación y gestión de conocimiento, sus autores más representativos son McCrrthy y Minsky.


McCrrthy y Minsky

En el segundo enfoque encontramos que este se orienta a la creación de un sistema artificial capaz de realizar procesos cognitivos humanos haciendo importante ya no la utilidad como el método, los aspectos fundamentales de este enfoque se refieren al aprendizaje y adaptabiliada y sus autores son Newell y Simon de la Carnegie Mellon University.

La IA al tratar de construir maquinas que se comporten aparentemente como seres humanos han dado lugar al surgimiento de dos bloques enfrentados: el enfoque simbólico o top-down, conocido como la IA clásica y el enfoque subsimbolico llamado a veces conexionista.

Los simbólicos simulan directamente las características inteligentes que se pretenden conseguir o imitar y lo mejor que también se tiene a la mano es el hombre; para los constructores de los sistemas expertos resulta fundamental la representación del conocimiento humano donde gracias a estos avances se han encontrado dos tipos de conocimiento: conocimiento acerca del problema particular¨ y ¨conocimiento a cerca de cómo obtener mas conocimiento a partir del que ya tenemos¨. El ejemplo más representativo de esta corriente es el proyecto de Cyc de Douglas B. Lenat sobre un sistema que posee en su memoria millones de hechos interconectados.

Dentro de la otra corriente: la subsimbolica; sus esfuerzos se orientan a la simulación de los elementos de mas bajo nivel dentro de los procesos inteligentes con la esperanza de que estos al combinarse permitan que espontáneamente surja el comportamiento inteligente. Los ejemplos mas claros que trabajan con este tipo de orientación son las redes neuronales y los algoritmos genéticos donde estos sistemas trabajan bajo la autonomía, el aprendizaje y la adaptación, conceptos fuertemente relacionados.



Uno de los grandes seguidores de la IA; Marvin Minsky, ha dado una clasificación para los lenguajes de programación que se utilizan en esta disciplina:


Marvin Minsky

•¨Haga ahora¨:Donde el programador surte de instrucciones a la maquina para realizar una tarea determinada donde todo queda especificado excepto quizás él numero de repeticiones.
•¨Haga siempre que¨: Aquí se permite escribir un programa que le sirva a la computadora para resolver aquello problemas que el programador no sabe resolver pero conoce que tipo de soluciones se pueden intentar.
•"De constreñimiento": se escriben programas que definen estructuras y estados que se condicionan y limitan recíprocamente.
Pero Minsky, admite que aún será necesario desarrollar dos tipos de lenguajes más para obtener una IA comparable a la inteligencia humana; y estos podrían ser.

•"Haga algo que tenga sentido¨: Donde se permite al programa aprender del pasado y en una nueva situación aplicar sus enseñanzas.
•"Mejórense a sí mismo": Allí se podrá permitir escribir programas que tengan en adelante la capacidad de escribir programas mejores que ellos mismos.
Otro punto desde luego tiene que ver con el tema que aquí estamos tratando es por supuesto el concepto de lo que es creatividad, que a simple vista es algo que no podemos explicar porque es resultado de un don especial pero que los estudios sobre IA han comenzado hacer posible dar explicación satisfactoria: nos dicen que en la medida que se logre escribir programas que exhiban propiedad, en esa misma medida se empezara a explicar la creatividad.

Otra propiedad que se espera ver asociada a la IA es la autoconciencia; que de acuerdo con los resultados de las investigaciones psicológicas hablan por una parte de que como es bien sabido, el pensamiento humano realiza gran cantidad de funciones que no se pueden calificar de conscientes y que por lo tanto la autoconciencia contribuye en cierto sentido a impedir el proceso mental eficiente; pero por otro lado es de gran importancia poder tener conocimiento sobre nuestras propias capacidades y limitaciones siendo esto de gran ayuda para el funcionamiento de la inteligencia tanto de la maquina como del ser humano.

Pero seria imposible tratar de contemplar el tema de la IA sin recurrir a la cuestión de la complejidad; donde el comportamiento inteligente es el resultado de la interacción de muchos elementos y que con seguridad es una de las más valiosas contribuciones al tratar de simular en la maquina los fenómenos intelectuales humanos.

La IA se ha desarrollado como disciplina a partir de la concepción de la inteligencia que se realizo al interior de la psicología y a partir de la cual se elaboraron diferentes categorías.

La inteligencia artificial y los sentimientos


El concepto de IA es aún demasiado difuso. Contextualizando, y teniendo en cuenta un punto de vista científico, podríamos englobar a esta ciencia como la encargada de imitar una persona, y no su cuerpo, sino imitar al cerebro, en todas sus funciones, existentes en el humano o inventadas sobre el desarrollo de una máquina inteligente.

A veces, aplicando la definición de Inteligencia Artificial, se piensa en máquinas inteligentes sin sentimientos, que «obstaculizan» encontrar la mejor solución a un problema dado. Muchos pensamos en dispositivos artificiales capaces de concluir miles de premisas a partir de otras premisas dadas, sin que ningún tipo de emoción tenga la opción de obstaculizar dicha labor.

En esta línea, hay que saber que ya existen sistemas inteligentes. Capaces de tomar decisiones «acertadas».

Aunque, por el momento, la mayoría de los investigadores en el ámbito de la Inteligencia Artificial se centran sólo en el aspecto racional, muchos de ellos consideran seriamente la posibilidad de incorporar componentes «emotivos» como indicadores de estado, a fin de aumentar la eficacia de los sistemas inteligentes.

Particularmente para los robots móviles, es necesario que cuenten con algo similar a las emociones con el objeto de saber –en cada instante y como mínimo– qué hacer a continuación [Pinker, 2001, p. 481].

Al tener «sentimientos» y, al menos potencialmente, «motivaciones», podrán actuar de acuerdo con sus «intenciones» [Mazlish, 1995, p. 318]. Así, se podría equipar a un robot con dispositivos que controlen su medio interno; por ejemplo, que «sientan hambre» al detectar que su nivel de energía está descendiendo o que «sientan miedo» cuando aquel esté demasiado bajo.

Esta señal podría interrumpir los procesos de alto nivel y obligar al robot a conseguir el preciado elemento [Johnson-Laird, 1993, p. 359]. Incluso se podría introducir el «dolor» o el «sufrimiento físico», a fin de evitar las torpezas de funcionamiento como, por ejemplo, introducir la mano dentro de una cadena de engranajes o saltar desde una cierta altura, lo cual le provocaría daños irreparables.

Esto significa que los sistemas inteligentes deben ser dotados con mecanismos de retroalimentación que les permitan tener conocimiento de estados internos, igual que sucede con los humanos que disponen de propiocepción, interocepción, nocicepción, etcétera. Esto es fundamental tanto para tomar decisiones como para conservar su propia integridad y seguridad. La retroalimentación en sistemas está particularmente desarrollada en cibernética, por ejemplo en el cambio de dirección y velocidad autónomo de un misil, utilizando como parámetro la posición en cada instante en relación al objetivo que debe alcanzar. Esto debe ser diferenciado del conocimiento que un sistema o programa computacional puede tener de sus estados internos, por ejemplo la cantidad de ciclos cumplidos en un loop o bucle en sentencias tipo do... for, o la cantidad de memoria disponible para una operación determinada.

A los sistemas inteligentes el no tener en cuenta elementos emocionales les permite no olvidar la meta que deben alcanzar. En los humanos el olvido de la meta o el abandonar las metas por perturbaciones emocionales es un problema que en algunos casos llega a ser incapacitante. Los sistemas inteligentes, al combinar una memoria durable, una asignación de metas o motivación, junto a la toma de decisiones y asignación de prioridades con base en estados actuales y estados meta, logran un comportamiento en extremo eficiente, especialmente ante problemas complejos y peligrosos.

En síntesis, lo racional y lo emocional están de tal manera interrelacionados entre sí, que se podría decir que no sólo no son aspectos contradictorios sino que son –hasta cierto punto– complementarios.
Inteligencia artificial convencional
Se conoce también como IA simbólico-deductiva. Está basada en el análisis formal y estadístico del comportamiento humano ante diferentes problemas:

Razonamiento basado en casos: Ayuda a tomar decisiones mientras se resuelven ciertos problemas concretos y aparte que son muy importantes requieren de un buen funcionamiento.
Sistemas expertos: Infieren una solución a través del conocimiento previo del contexto en que se aplica y ocupa de ciertas reglas o relaciones.
Redes bayesianas: Propone soluciones mediante inferencia estadística.
Inteligencia artificial basada en comportamientos: que tienen autonomía y pueden auto-regularse y controlarse para mejorar.
Smart process management: facilita la toma de decisiones complejas, proponiendo una solución a un determinado problema al igual que lo haría un especialista en la actividad.
Inteligencia artificial computacional
Artículo principal: Inteligencia Computacional
La Inteligencia Computacional (también conocida como IA subsimbólica-inductiva) implica desarrollo o aprendizaje interactivo (por ejemplo, modificaciones interactivas de los parámetros en sistemas conexionistas). El aprendizaje se realiza basándose en datos empíricos.

Inteligencia Artificial


Se denomina inteligencia artificial (IA) a la rama de las Ciencias de la Computación[1] [2] [3] dedicada al desarrollo de agentes racionales no vivos.

Para explicar la definición anterior, entiéndase a un agente como cualquier cosa capaz de percibir su entorno (recibir entradas), procesar tales percepciones y actuar en su entorno (proporcionar salidas), y entiéndase a la [racionalidad] como la característica que posee una elección de ser correcta, más específicamente, de tender a maximizar un resultado esperado (este concepto de racionalidad es más general y por ello más adecuado que inteligencia para definir la naturaleza del objetivo de esta disciplina).

Por lo tanto, y de manera más específica la inteligencia artificial es la disciplina que se encarga de construir procesos que al ser ejecutados sobre una arquitectura física producen acciones o resultados que maximizan una medida de rendimiento determinada, basándose en la secuencia de entradas percibidas y en el conocimiento almacenado en tal arquitectura.

Existen distintos tipos de conocimiento y medios de representación del conocimiento. El cual puede ser cargado en el agente por su diseñador o puede ser aprendido por el mismo agente utilizando técnicas de aprendizaje.

También se distinguen varios tipos de procesos válidos para obtener resultados racionales, que determinan el tipo de agente inteligente. De más simples a más complejos, los cinco principales tipos de procesos son:

Ejecución de una respuesta predeterminada por cada entrada (análogas a actos reflejos en seres vivos).
Búsqueda del estado requerido en el conjunto de los estados producidos por las acciones posibles.
Algoritmos genéticos (análogo al proceso de evolución de las cadenas de ADN).
Redes neuronales artificiales (análogo al funcionamiento físico del cerebro de animales y humanos).
Razonamiento mediante una lógica formal (análogo al pensamiento abstracto humano).
También existen distintos tipos de percepciones y acciones, pueden ser obtenidas y producidas, respectivamente por sensores físicos y sensores mecánicos en máquinas, pulsos eléctricos u ópticos en computadoras, tanto como por entradas y salidas de bits de un software y su entorno software.

Varios ejemplos se encuentran en el área de control de sistemas, planificación automática, la habilidad de responder a diagnósticos y a consultas de los consumidores, reconocimiento de escritura, reconocimiento del habla y reconocimiento de patrones. Los sistemas de IA actualmente son parte de la rutina en campos como economía, medicina, ingeniería y la milicia, y se ha usado en gran variedad de aplicaciones de software, juegos de estrategia como ajedrez de computador y otros videojuegos